Vacuum insulation panels
Vacuum insulation glass
Research & development
Further reading
Teaching aids

Vacuum insulation panels: Background

The principle of achieving low thermal conductivity via evacuation is known from the Thermos flask, which comprises a doubled-walled glass envelope. The space between the glass cylinders is evacuated to about 10 - 6 mbar in order to suppress gaseous conduction. The glass surfaces are coated with a heat-reflecting metal layer to suppress radiative thermal transfer. Such Dewar flasks were first made by the chemist and physicist, Sir James Dewar, around 1890. The first commercially manufactured vacuum flasks were produced by the German company Thermos GmbH (hence the trade name) in 1904.
If a void is evacuated, the envelope is loaded with 1 bar atmospheric pressure which corresponds to 10 t per m². Due to the cylindrical form of the glass or stainless steel casing, Thermos flasks and cryogenic vessels can withstand such pressures. Evacuated flat insulation elements, required in the building industry, need to have a load-bearing filling material to take up the atmospheric pressure load. The thermal conduction across the solid core should be kept as small as possible. The core must therefore have a high porosity.
Linde AG developed a procedure for thermally insulating pipes in 1971. Flat vacuum insulation panels were first developed in the 1970s for use in refrigerators and freezers. Specially developed high-barrier foils were used as envelopes instead of the stainless steel or glass previously used in Thermos flasks. Modern high-barrier foils comprise several layers of metal-coated plastic. The coating reduces leakage. Nanostructured filling materials with pore sizes < 100 nm are used for the core. Instead of a high vacuum as in Thermos flasks, a pressure reduction to 1 mbar is sufficient to completely suppress gaseous conduction in such nanoporous cores.
Measurements and tests carried out on VIPs over the last years indicate that the necessary vacuum can be maintained for 30 to 50 years, making them suitable for building applications. Increasingly stricter demands are being made on insulation to reduce energy consumption and CO2 emissions. Research is still being carried out to further improve the foils and cores.

top of page
legal information